Recruitment by numbers: the tale of Adam and Bobby

One of the charges against analytics is that it hasn’t really demonstrated its utility, particularly in relation to recruitment. This is an argument I have some sympathy with. Having followed football analytics for over three years, I’m well-versed in the metrics that could aid decision making in football but I can appreciate that the body of work isn’t readily accessible without investing a lot of time.

Furthermore, clubs are understandably reticent about sharing the methods and processes that they follow, so successes and failures attributable to analytics are difficult to unpick from the outside.

Rather than add to the pile of analytics in football think-pieces that have sprung up recently, I thought I would try and work through how analysing and interpreting data might work in practice from the point of view of recruitment. Show, rather than tell.

While I haven’t directly worked with football clubs, I have spoken with several people who do use numbers to aid recruitment decisions within them, so I have some idea of how the process works. Data analysis is a huge part of my job as a research scientist, so I have a pretty good understanding of the utility and limits of data (my office doesn’t have air-conditioning though and I rarely use spreadsheets).

As a broad rule of thumb, public analytics (and possibly work done in private also) is generally ‘better’ at assessing attacking players, with central defenders and goalkeepers being a particular blind-spot currently. With that in mind, I’m going to focus on two attacking midfielders that Liverpool signed over the past two summers, Adam Lallana and Roberto Firmino.

The following is how I might employ some analytical tools to aid recruitment.

Initial analysis

To start with I’m going to take a broad look at their skill sets and playing style using the tools that I developed for my OptaPro Forum presentation, which can be watched here. The method uses a variety of metrics to identify different player types, which can give a quick overview of playing style and skill set. The midfielder groups isolated by the analysis are shown below.

Midfielders

Midfield sub-groups identified using the playing style tool. Each coloured circle corresponds to an individual player. Data via Opta.

I think this is a useful starting point for data analysis as it can give a quick snap shot of a player and can also be used for filtering transfer requirements. The utility of such a tool is likely dependent on how well scouted a particular league is by an individual club.

A manager, sporting director or scout could feed into the use of such a tool by providing their requirements for a new signing, which an analyst could then use to provide a short-list of different players. I know that this is one way numbers are used within clubs as the number of leagues and matches that they take an interest in outstrips the number of ‘traditional’ scouts that they employ.

As far as our examples are concerned, Lallana profiles as an attacking midfielder (no great shock) and Firmino belongs in the ‘direct’ attackers class as a result of his dribbling and shooting style (again no great shock). Broadly speaking, both players would be seen as attacking midfielders but the analysis is picking up their differing styles which are evident from watching them play.

Comparing statistical profiles

Going one step further, fairer comparisons between players can be made based upon their identified style e.g. marking down a creative midfielders for taking a low number of shots compared to a direct attacker would be unfair, given their respective roles and playing style.

Below I’ve compared their statistical output during the 2013/14 season, which is the season before Lallana signed for Liverpool and I’m going to make the possibly incorrect assumption that Firmino was someone that Liverpool were interested in that summer also. Some of the numbers (shots, chances created, throughballs, dribbles, tackles and interceptions) were included in the initial player style analysis above, while others (pass completion percentage and assists) are included as some additional context and information.

The aim here is to give an idea of the strengths, weaknesses and playing style of each player based on ranking a player against their peers. Whether a player ranks low or high on a particular metric is a ‘good’ thing or not is dependent on the statistic e.g. taking shots from outside the box isn’t necessarily a bad thing to do but you might not want to be top of the list (Andros Townsend in case you hadn’t guessed). Many will also depend on the tactical system of their team and their role within it.

The plots below are to varying degrees inspired by Ted Knutson, Steve Fenn and Florence Nightingale (Steve wrote about his ‘gauge’ graph here). There are more details on these figures at the bottom of the post*.

Lallana.

Data via Opta.

Lallana profiles as a player who is good/average at several things, with chances created seemingly being his stand-out skill here (note this is from open-play only). Firmino on the other hand is strong and even elite at several of these measures. Importantly, these are metrics that have been identified as important for attacking midfielders and they can also be linked to winning football matches.

Firmino.

Data via Opta.

Based on these initial findings, Firmino looks like an excellent addition, while Lallana is quite underwhelming. Clearly this analysis doesn’t capture many things that are better suited to video and live scouting e.g. their defensive work off the ball, how they strike a ball, their first touch etc.

At this stage of the analysis, we’ve got a reasonable idea of their playing style and how they compare to their peers. However, we’re currently lacking further context for some of these measures, so it would be prudent to examine them further using some other techniques.

Diving deeper

So far, I’ve only considered one analytical method to evaluate these players. An important thing to remember is that all methods will have their flaws and biases, so it would be wise to consider some alternatives.

For example, I’m not massively keen on ‘chances created’ as a statistic, as I can imagine multiple ways that it could be misleading. Maybe it would be a good idea then to look at some numbers that provide more context and depth to ‘creativity’, especially as this should be a primary skill of an attacking midfielder for Liverpool.

Over the past year or so, I’ve been looking at various ways of measuring the contribution and quality of player involvement in attacking situations. The most basic of these looks at the ability of a player to find his team mates in ‘dangerous’ areas, which broadly equates to the central region of the penalty area and just outside it.

Without wishing to go into too much detail, Lallana is pretty average for an attacking midfielder on these metrics, while Firmino was one of the top players in the Bundesliga.

I’m wary of writing Lallana off here as these measures focus on ‘direct’ contributions and maybe his game is about facilitating his team mates. Perhaps he is the player who makes the pass before the assist. I can look at this also using data by looking at the attacks he is involved in. Lallana doesn’t rise up the standings here either, again the quality and level of his contribution is basically average. Unfortunately, I’ve not worked up these figures for the Bundesliga, so I can’t comment on how Firmino shapes up here (I suspect he would rate highly here also).

Recommendation

Based on the methods outlined above, I would have been strongly in favour of signing Firmino as he mixes high quality creative skills with a goal threat. Obviously it is early days for Firmino at Liverpool (a grand total of 239 minutes in the league so far), so assessing whether the signing has been successful or not would be premature.

Lallana’s statistical profile is rather average, so factoring in his age and price tag, it would have seemed a stretch to consider him a worthwhile signing based on his 2013/14 season. Intriguingly, when comparing Lallana’s metrics from Southampton and those at Liverpool, there is relatively little difference between them; Liverpool seemingly got the player they purchased when examining his statistical output based on these measures.

These are my honest recommendations regarding these players based on these analytical methods that I’ve developed. Ideally I would have published something along these lines in the summer of 2014 but you’ll just have to take my word that I wasn’t keen on Lallana based on a prototype version of the comparison tool that I outlined above and nothing that I have worked on since has changed that view. Similarly, Firmino stood out as an exciting player who Liverpool could reasonably obtain.

There are many ways I would like to improve and validate these techniques and they might bear little relation to the tools used by clubs. Methods can always be developed, improved and even scraped!

Hopefully the above has given some insight into how analytics could be a part of the recruitment process.

Coda

If analytics is to play an increasing role in football, then it will need to build up sufficient cachet to justify its implementation. That is a perfectly normal sequence for new methods as they have to ‘prove’ themselves before seeing more widespread use. Analytics shouldn’t be framed as a magic bullet that will dramatically improve recruitment but if it is used well, then it could potentially help to minimise mistakes.

Nothing that I’ve outlined above is designed to supplant or reduce the role of traditional scouting methods. The idea is just to provide an additional and complementary perspective to aid decision making. I suspect that more often than not, analytical methods will come to similar conclusions regarding the relative merits of a player, which is fine as that can provide greater confidence in your decision making. If methods disagree, then they can be examined accordingly as a part of the process.

Evaluating players is not easy, whatever the method, so being able to weigh several assessments that all have their own strengths, flaws, biases and weaknesses seems prudent to me. The goal of analytics isn’t to create some perfect and objective representation of football; it is just another piece of the puzzle.

truth … is much too complicated to allow anything but approximations – John von Neumann


*I’ve done this by calculating percentile figures to give an indication of how a player compares with their peers. Values closer to 100 indicate that a player ranks highly in a particular statistic, while values closer to zero indicate they attempt or complete few of these actions compared to their peers. In these examples, Lallana and Firmino are compared with other players in the attacking midfielder, direct attacker and through-ball merchant groups. The white curved lines are spaced every ten percentiles to give a visual indication of how the player compares, with the solid shading in each segment corresponding to their percentile rank.

Advertisements

Networking for success

In my previous post, I described my possession danger rating model, which classifies attacks according to their proximity to goal and their relative occurrence compared to other areas of the pitch. Each possession sequence in open-play is assigned a value depending on where it ends. The figure below outlines the model, with possession sequences ending closer to goal given more credit than those that break down further away.

Map of the pass weighting model based on data from the English Premier League. Data via Opta.

Map of the pass weighting model based on data from the English Premier League. Data via Opta.

Instead of just looking at this metric at the team level, there are numerous ways of breaking it down to the player level.

For each possession, a player could be involved in numerous ways e.g. winning the ball back via a tackle, a successful pass or cross, a dribble past an opponent or a shot at goal. Players that are involved in more dangerous possessions may be more valuable, particularly when we compare them to their peers. When viewing teams, we may identify weak links who reduce the effectiveness of an attack. Conversely, we can pick out the stars in a team or indeed the league.

Networking

One popular method of analysing the influence of players on a team is network analysis. This is something I’ve used in the past to examine how a team plays and who the crucial members of a team are. It looks at who a player passes the ball to and who they receive passes from, with players with many links to their teammates usually rated more highly. For example, a midfield playmaker who provides the link between a defence and attack will often score more highly than a centre back who mainly receives passes from their goalkeeper and then plays a simple pass to their central defensive partner.

In order to assess the influence of players on attacking possessions, I’ve combined the possession danger rating model with network analysis. This adjusts the network analysis to give more credit to players involved in more dangerous attacks, while also allowing us to identify the most influential members of a team.

Below is an example network for Liverpool last season during a 10 match period where they mainly played in a 3-4-3 formation. The most used eleven players during this period are shown according to their average position, with links between each player coloured according to how dangerous the possessions these links contributed to were.

Possession network for Liverpool for the ten matches from Swansea City (home) to Burnley (home) during the 2014/15 season. Lines are coloured according to the relative danger rating per each possession between each player. Player markers are sized by their adjusted closeness centrality score.

Possession network for Liverpool for the ten matches from Swansea City (home) to Burnley (home) during the 2014/15 season. Lines are coloured according to the relative danger rating per each possession between each player. Player markers are sized by their adjusted closeness centrality score (see below). Data via Opta.

Philippe Coutinho (10) was often a crucial cog in the network as he linked up with many of his team mates and the possessions he was involved with were often dangerous. His links with Sakho (17) and Moreno (18) appears to have been a fruitful avenue for attacks – this is an area we could examine in more detail via both data and video analysis if we were scouting Liverpool’s play. Over the whole season, Coutinho was easily the most crucial link in the team, which will come as no surprise to anyone who watched Liverpool last season.

Making the play

We can go further than players on a single team and compare across the entire league last season. To do this, I’ve calculated each players ‘closeness centrality‘ score or player influence score but scaled it according to how dangerous the possessions they were involved in were over the season. The rating is predominantly determined by how many possessions they are involved in, how well they link with team mates and the danger rating of the possessions they contribute to.

Yaya Touré leads the league by some distance due to him essentially being the crucial cog in the best attack in the league last season. Many of the players on the list aren’t too surprising, with a collection of Arsenal and Manchester City players high on the list plus the likes of Coutinho and Hazard also featuring.

The ability to effectively dictate play and provide a link for your team mates is likely desirable but the level of involvement a player has may be strongly governed by team tactics and their position on the field. One way around this is to control for the number of possessions a player is involved in to separate this out from the rating; Devin Pleuler made a similar adjustment in this Central Winger post.

Below are the top twenty players from last season according to this adjusted rating, which I’m going to refer to as an ‘influence rating’.

Top twenty players (minimum 1800 minutes) per the adjusted influence rating for the 2014/15 Premier League season. The number of completed passes each player made per 90 minutes is shown on the left. Data via Opta.

When accounting for their level of involvement, Mesut Özil rises to the top, narrowly ahead of Santi Cazorla and Yaya Touré. While players such as these don’t lead the league in terms of the most dangerous passes in open-play, they appear to be crucial conduits for their respective attacks. That might entail choosing the best options to facilitate attacks, making space for their team mates or playing a crucial line-breaking pass to open up a defence or all of the above and more.

There are some surprising names on the list, not least the Burnley duo of Danny Ings and George Boyd! Their level of involvement was very low (the lowest of those in the chart above) but when they were involved, Burnley created quite dangerous attacks and they linked well with the rest of the team. Burnley had a reasonably decent attack last season based on their underlying numbers but they massively under-performed when it came to actual goals scored. The question here is would this level of influence be maintained in a different setup and with greater involvement?

Ross Barkley is perhaps another surprising inclusion given his reputation outside of those who depict him as the latest saviour of English football. Looking at his passing chart and links, this possibly points to the model not accounting for crossing often being a less effective method of attack; his passing chart in the final third is biased towards passes to wide areas, which often then results in a cross into the box. Something for version 2.0 to explore. He was Everton’s attacking hub player, which perhaps helps to explain their lack of penetration in attack last season.

Conclusion

The above is just one example of breaking down my dangerous possession metric to the player level. As with all metrics, it could certainly be improved e.g. additional measures of quality of possession could be included and I’m aware that there are likely issues with team effects inflating or deflating certain players. Rating across all players isn’t completely fair, as there is an obvious bias towards attack-minded players, so I will look to break it down across player positions and roles.

Stay tuned for future developments.

Help me rondo

In my previous post, I looked at the relationship between controlling the pitch (territory) and the ball (possession). When looking at the final plot in that post, you might infer that ‘good’ teams are able to control both territory and possession, while ‘bad’ teams are dominated on both counts. There are also teams that dominate only one metric, which likely relates to their specific tactical make-up.

When I calculated the territory metric, I didn’t account for the volume of passes in each area of the pitch as I just wanted to see how things stacked up in a relative sense. Territory on its own has a pretty woeful relationship with things we care about like points (r2=0.27 for the 2013/14 EPL) and goal difference (r2=0.23 for the 2013/14 EPL).

However, maybe we can do better if we combine territory and possession into one metric.

To start with, I’ve plotted some heat maps (sorry) showing pass completion percentage based on the end point of the pass. The completion percentage is calculated by adding up all of the passes to a particular area on the pitch and comparing that to the number of passes that are successfully received. I’ve done this for the 2013/14 season for the English Premier League, La Liga and the Bundesliga.

As you would expect, passes directed to areas closer to the goal are completed at lower rates, while passes within a teams own half are completed routinely.

Blah.

Heat map of pass completion percentage based on the target of all passes in the 2013/14 English Premier League, La Liga and Bundesliga. Data via Opta.

What is interesting in the below plots is the contrast between England and Germany; in the attacking half of the pitch, pass completion is 5-10% lower in the Bundesliga than in the EPL. La Liga sits in-between for the most part but is similar to the Bundesliga within the penalty area. My hunch is that this is a result of the contrasting styles in these leagues:

  1. Defences often sit deeper in the EPL, particularly when compared to the Bundesliga, which results in their opponents completing passes more easily as they knock the ball around in front of the defence.
  2. German and Spanish teams tend to press more than their English counter-parts, which will make passing more difficult. In Germany, counter-pressing is particularly rife, which will make passing into the attacking midfield zone more challenging.

From the above information, I can construct a model* to judge the difficulty of a pass into each area of the pitch and given the differences between the leagues, I do this for each league separately.

I can then use this pass difficulty rating along with the frequency of passes into that location to put a value on how ‘dangerous’ a pass is e.g. a completed pass received on the penalty spot in your opponents penalty area would be rated more highly than one received by your own goalkeeper in his six-yard box.

Below is the resulting weighting system for each league. Passes that are received in-front of the goal within the six-yard box would have a rating close to one, while passes within your own half are given very little weighting as they are relatively easy to complete and are frequent.

There are slight differences between each league, with the largest differences residing in the central zone within the penalty area.

Blah.

Heat map of pass weighting model for the 2013/14 English Premier League, La Liga and Bundesliga. Data via Opta.

Using this pass weighting scheme, I can assign a score to each pass that a team completes, which ‘rewards’ them for completing more dangerous passes themselves and preventing their opponents from moving the ball into more dangerous areas. For example, a team that maintains possession in and around the opposition penalty area will increase their score. Similarly, if they also prevent their opponent from moving the ball into dangerous areas near their own penalty area, this will also be rewarded.

Below is how this Territorial-Possession Dominance (TPD) metric relates to goal difference. It is calculated by comparing the for and against figures as a ratio and I’ve expressed it as a percentage.

Broadly speaking, teams with a higher TPD have a better goal difference (overall r2=0.59) but this varies across the leagues. Unsurprisingly, Barcelona and Bayern Munich are the stand-out teams on this metric as they pin teams in and also prevent them from possessing the ball close to their own goal. Manchester City (the blue dot next to Real Madrid) had the highest TPD in the Premier League.

In Germany, the relationship is much stronger (r2=0.87), which is actually better than both Total Shot Ratio (TSR, r2=0.74) and Michael Caley’s expected goals figures (xGR, r2=0.80). A major caveat here though is that this is just one season in a league with only 18 teams and Bayern Munich’s domination certainly helps to strengthen the relationship.

The relationship is much weaker in Spain (r2=0.35) and is worse than both TSR (r2=0.54) and xGR (r2=0.77).  A lot of this is driven by the almost non-existent explanatory power of TPD when compared with goals conceded (r2=0.06). La Liga warrants further investigation.

England sits in-between (r2=0.69), which is on a par with TSR (r2=0.72). I don’t have xGR numbers for last season but I believe xGR is usually a few points higher than TSR in the Premier League.

Blah.

Relationship between goal difference per game and territorial-possession dominance for the 2013/14 English Premier League, La Liga and Bundesliga. Data via Opta.

The relationship between TPD and points (overall r2=0.56) is shown below and is broadly similar to goal difference. The main difference is that the strength of the relationship in Germany is weakened.

Blah.

Relationship between points per game and territorial-possession dominance for the 2013/14 English Premier League, La Liga and Bundesliga. Data via Opta.

Over the summer, I’ll return to these correlations in more detail when I have more data and the relationships are more robust. For now, the metric appears to be useful and I plan to improve it further. Also, I’ll be investigating what it can tell us about a teams style when combined with other metrics.

——————————————————————————————————————– *For those who are interested in the method, I calculated the relative distance of each pass from the centre of the opposition goal using the distance along the x-axis (the length of the pitch) and the angle relative to a centre line along the length of the pitch.

I then used logistic regression to calculate the probability of a pass being completed; passes are deemed either successful or unsuccessful, so logistic regression is ideal and avoids putting the passes into location buckets on the pitch.

I then weighted the resulting probability according to the frequency of passes received relative to the distance from the opposition goal-line. This gave me a ‘score’ for each pass, which I used to calculate the territory weighted possession for each team.

Territorial advantage?

One of the recurring themes regarding the playing style of football teams is the idea that teams attempt to strike a balance between controlling space and controlling possession. The following quote is from this Jonathan Wilson article during the European Championships in 2012, where he discusses the spectrum between proactive and reactive approaches:

Great teams all have the same characteristic of wanting to control the pitch and the ball – Arrigo Sacchi.

No doubt there are multiple ways of defining both sides of this idea.

Controlling the ball is usually represented by possession, that is the proportion of the passes that a team plays in a single match or series of matches. If a team has the ball, then by definition, they are controlling it.

One way of defining the control of space is to think about ball possession in relation to the location of the ball on the pitch. A team that routinely possesses the ball closer to their opponents goal potentially benefits from the increased attacking opportunities that this provides, while also benefiting from the ball being far away from their own goal should they lose it.

There are certainly issues with defining control of space in this way though e.g. a well-drilled defence may be happy to see a team playing the ball high up the pitch in front of them, especially if they are adept at counter-attacking when they win the ball back.

Below is a heat map of the location of received passes in the 2013/14 English Premier League. The play is from left-to-right i.e. the team in possession is attacking towards the right-hand goal. We can see that passes are most frequently received in midfield areas, with the number of passes received decreasing quickly as we head towards each penalty area.

Text.

Heat map of the location of received passes in the 2013/14 English Premier League. Data via Opta.

Below is another heat map showing pass completion percentage based on the end point of the pass. The completion percentage is calculated by adding up all of the passes to a particular area on the pitch and comparing that to the number of passes that are successfully received. One thing to note here is that the end point of uncompleted passes relates to where possession was lost, as the data doesn’t know the exact target of each pass (mind-reading isn’t part of the data collection process as far as I know). That does mean that the pass completion percentage is an approximation but this is based on over 300,000 passes, so the effect is likely small.

What is very clear from the below graphic is that when within a teams own half, passes are completed routinely. The only areas where this drops are near the corner flags; I assume this is due to players either clearing the ball or playing it against an opponent when boxed into the corner.

Text.

Heat map of pass completion percentage based on the target of all passes in the 2013/14 English Premier League. Data via Opta.

As teams move further into the attacking half, pass completion drops. In the central zone within the penalty area, less than half of all passes are completed and this drops to less than 20% within the six yard box. These passes within the “danger zone” are infrequent and completed far less frequently than other passes. This danger zone is frequently cited by analysts looking at shot location data as the prime zone for scoring opportunities; you would imagine that receiving passes in this zone would be beneficial.

None of the above is new. In fact, Gabe Desjardins wrote about these features using data from a previous Premier League season here and showed broadly similar results (thanks to James Grayson for highlighting his work at various points). The main thing that looks different is the number of passes played into the danger zone, I’m not sure why this is but 2012/13 and 2014/15 so far look very similar to the above in my data.

Gabe used these results to calculate a territory statistic by weighting each pass by its likelihood of being completed. He found that this measure was strongly related to success and the performance of a team.

Below is my version of territory plotted against possession for the 2013/14 Premier League season. Broadly there are four regimes in the below plot:

  1. Teams like Manchester City, Chelsea and Arsenal who dominate territory and have plenty of possession. These teams tend to pin teams in close to their goal.
  2. Teams like Everton, Liverpool and Southampton who have plenty of possession but don’t dominate territory (all there are just under a 50% share). Swansea are an extreme case in as they have lots of possession but it is concentrated in their own half where passes are easier to complete.
  3. Teams like West Brom and Aston Villa who have limited possession but move the ball into attacking areas when they do have it. These are quite direct teams, who don’t waste much time in their build-up play. Crystal Palace are an extreme in terms of this approach.
  4. Teams that have limited possession and when they do have it, they don’t have much of it in dangerous areas at the attacking end of the pitch. These teams are going nowhere, slowly.
Text.

Territory percentage plotted against possession for English Premier League. Data via Opta.

Liverpool are an interesting example, as while their overall territory percentage ranks at fourteenth in the league, this didn’t prevent them moving the ball into the danger zone. For just passes received within the danger zone, they ranked third on 3.4 passes per game behind Chelsea (3.8) and Manchester City (4) and ahead of Arsenal on 2.9.

This ties in with Liverpool’s approach last season, where they would often either attack quickly when winning the ball or hold possession within their own half to try and draw teams out and open up space. Luis Suárez was crucial in this aspect, as he averaged 1.22 completed passes into the danger zone per 90 minutes. This was well ahead of Sergio Agüero in second place on 0.94 per 90 minutes.

The above is just a taster of what can be learnt from this type of data. I’ll be expanding on the above in more detail and for more leagues in the future.